Take our Survey

Reference: Maslyk M, et al. (2008) Yeast surviving factor Svf1 as a new interacting partner, regulator and in vitro substrate of protein kinase CK2. Mol Cell Biochem 312(1-2):61-9

Reference Help

Abstract

Since Svf1 is phosphoprotein, we investigated whether it was a substrate for protein kinase CK2. According to the amino acid sequence Svf1 harbours 20 putative CK2 phosphorylation sites. Here, we have reported cloning, overexpression, purification and characterization of yeast Svf1 as a substrate for three forms of yeast CK2. Svf1 serves as a substrate for both the recombinant CK2alpha (K (m) 0.35 muM) and CK2alpha' (K (m) 0.18 muM) as well as CK2 holoenzyme (K (m) 1.1 muM). Different K (m) values argue that CK2beta(beta') subunit has an inhibitory effect on the activity of both CK2alpha and CK2alpha' towards surviving factor Svf1. Reconstitution of alpha'(2)betabeta' isoform of CK2 holoenzyme shows that beta/beta' subunits have regulatory effect depending on the kind of CK2 catalytic subunit. This effect was not observed in the case of alpha(2)betabeta' isoform, which may be due to interaction between Svf1 and regulatory CK2beta subunit (shown by co-immunoprecipitation experiments). Interactions between CK2 subunits and Svf1 protein may have influence on ATP as well as ATP-competitive inhibitors (TBBt and TBBz) binding. CK2 phosphorylates up to six serine residues in highly acidic peptide K(199)EVIPESDEEESSADEDDNEDEDEESGDSEEESGSEEESDSEEVEITYED(248) of the Svf1 protein in vitro. Presented data may help to elucidate the role of protein kinase CK2 and Svf1 in the regulation of cell survival pathways.

Reference Type
Journal Article
Authors
Maslyk M, Kochanowicz E, Zielinski R, Kubinski K, Hellman U, Szyszka R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference