Reference: Ramirez M and Ambrona J (2008) Construction of sterile ime1Delta-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature. Appl Environ Microbiol 74(7):2129-34

Reference Help

Abstract


The use of new transgenic yeasts in industry carries a potential environmental risk because their dispersal, introducing new artificial genetic combinations into nature, could have unpredictable consequences. This risk could be avoided by using sterile transgenic yeasts, unable to sporulate and mate with wild yeasts. These sterile yeasts would not survive the annual cyclic harvesting periods, being condemned to disappear in the wineries and vineyards in less than a year. We have constructed new ime1Delta wine yeasts, unable to sporulate and mate, and bearing easy to detect genetic markers, and which quickly disappeared in grape must fermentation just after sporulation of the yeast population. These sterile yeasts and maintained the same biotechnological properties as their parent yeasts, without any detectable deleterious effect of the ime1Delta mutation. They are therefore interesting biotechnologically for food industry applications and GMO environmental monitoring studies.

Reference Type
Journal Article
Authors
Ramirez M, Ambrona J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference