Reference: Kiakos K, et al. (2007) DNA sequence selective adenine alkylation, mechanism of adduct repair, and in vivo antitumor activity of the novel achiral seco-amino-cyclopropylbenz[e]indolone analogue of duocarmycin AS-I-145. Mol Cancer Ther 6(10):2708-18

Reference Help

Abstract


AS-I-145 is a novel achiral seco-amino-cyclopropylbenz[e]indolone (seco-amino-CBI) analogue of duocarmycin that has evolved from an alternative strategy of designing CC-1065/duocarmycin agents lacking the characteristic chiral center of the natural agents. The sequence specificity of this compound was assessed by a Taq polymerase stop assay, identifying the sites of covalent modification on plasmid DNA. The adenine-N3 adducts were confirmed at AT-rich sequences using a thermally induced strand cleavage assay. These studies reveal that this compound retains the inherent sequence selectivity of the related natural compounds. The AS-I-145 sensitivity of yeast mutants deficient in excision and post-replication repair (PRR) pathways was assessed. The sensitivity profile suggests that the sequence-specific adenine-N3 adducts are substrates for nucleotide excision repair (NER) but not base excision repair (BER). Single-strand ligation PCR was employed to follow the induction and repair of the lesions at nucleotide resolution in yeast cells. Sequence specificity was preserved in intact cells, and adduct elimination occurred in a transcription-coupled manner and was dependent on a functional NER pathway and Rad18. The involvement of NER as the predominant excision pathway was confirmed in mammalian DNA repair mutant cells. AS-I-145 showed good in vivo antitumor activity in the National Cancer Institute standard hollow fiber assay and was active against the human breast MDA-MD-435 xenograft when administered i.v. or p.o. Its novel structure and in vivo activity renders AS-I-145 a new paradigm in the design of novel achiral analogues of CC-1065 and the duocarmycins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Kiakos K, Sato A, Asao T, McHugh PJ, Lee M, Hartley JA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference