Take our Survey

Reference: Gao L and Bretscher A (2008) Analysis of Unregulated Formin Activity Reveals How Yeast Can Balance F-Actin Assembly between Different Microfilament-based Organizations. Mol Biol Cell 19(4):1474-84

Reference Help

Abstract


Monitoring Editor: Kerry Bloom Formins are regulated actin nucleating proteins that are widespread among eukaryotes. Overexpression of unregulated formins in budding yeast is lethal and causes a massive accumulation of disorganized cable-like filaments. To explore the basis of this lethality, a cDNA library was screened to identify proteins whose overexpression could rescue the lethality conferred by unregulated Bnr1p expression. Three classes of suppressors encoding actin-binding proteins were isolated. One class encodes proteins that promote the assembly of actin cables (TPM1, TPM2 and ABP140), suggesting that the lethality was rescued by turning disorganized filaments into functional cables. The second class encodes proteins that bind G-actin (COF1, SRV2 and PFY1), indicating that reduction of the pool of actin available for cable formation may also rescue lethality. Consistent with this, pharmacological or genetic reduction of available actin also protected the cell from overproduction of unregulated Bnr1p. The third class consists of Las17p, an activator of the formin-independent Arp2/3p-dependent actin nucleation pathway. These results indicate that proper assembly of actin cables is sensitive to the appropriate balance of their constituents, and that input into one pathway for actin filament assembly can affect another. Thus, cells must have a way of ensuring a proper balance between actin assembly pathways.

Reference Type
Journal Article
Authors
Gao L, Bretscher A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference