Reference: Singh K, et al. (2008) The Rho5 GTPase is necessary for oxidant-induced cell death in budding yeast. Proc Natl Acad Sci U S A 105(5):1522-7

Reference Help

Abstract

In both animal and yeast cells, reactive oxygen species (ROS) are produced as byproducts of metabolism and upon exposure to diverse environmental stresses. Cellular defense systems operate to avoid molecular damage caused by ROS, but the redox balance is disturbed under excessive stress. Cells of the budding yeast Saccharomyces cerevisiae undergo apoptotic-like cell death upon exposure to hydrogen peroxide (H(2)O(2)). Here, we report that the Rho5 GTPase of budding yeast is necessary for H(2)O(2)-induced cell death, which accompanies ROS accumulation and DNA fragmentation. Unlike WT, a rho5 deletion mutant (rho5Delta) exhibits little cell death, whereas the constitutively active rho5(G12V) mutant exhibits excess ROS accumulation and increased cell death upon H(2)O(2) treatment. Consistent with a role in the oxidative stress response, Rho5 interacts with the thioredoxin reductase Trr1, a key component of the cytoplasmic thioredoxin antioxidant system, in a GTP-dependent manner. This interaction occurs on the vacuolar membrane before exposure to H(2)O(2) but also in the vacuolar lumen after H(2)O(2) treatment. Trr1 levels are elevated in rho5Delta cells but are elevated only slightly in WT and not in the rho5(G12V) cells after H(2)O(2) treatment. Taken together, these data suggest that Rho5 mediates H(2)O(2)-induced cell death by regulating the level of Trr1 or by excluding Trr1 from its cytoplasmic substrate.

Reference Type
Journal Article
Authors
Singh K, Kang PJ, Park HO
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference