Reference: Norambuena L, et al. (2008) Identification of cellular pathways affected by Sortin2, a synthetic compound that affects protein targeting to the vacuole in Saccharomyces cerevisiae. BMC Chem Biol 8:1

Reference Help

Abstract


ABSTRACT: BACKGROUND: Sortin2 is a low mass compound that interferes with vacuolar delivery of proteins in plants and yeast. The Sortin2 phenotype was tested in Arabidopsis thaliana and found to be reversible upon drug removal, demonstrating the ability of chemical genomics to induce reversible phenotypes that would be difficult to achieve using conventional genetics [1]. However, standard genetic methods can be used to identify drug target pathways in a high-throughput manner. RESULTS: In this study, we analyzed structure-function relationships of Sortin2 using structural analogues. The results show the key roles of sulphite substitution and a benzoic acid group. A Sortin 2 hypersensitivity screen for the induced secretion of a vacuolar cargo protein was done utilizing a yeast haploid deletion library. Using bioinformatics approaches, we highlighted functional information about the cellular pathways affected by drug treatment which included protein sorting and other endomembrane system-related processes. CONCLUSIONS: Chemical, genomic and genetics approaches were used to understand the mode of action of Sortin2, a bioactive chemical that affects the delivery of a vacuolar protein. Critical features of Sortin2 structure necessary for bioactivity suggest a binding pocket that may recognize two ends of Sortin2. The genome-wide screen shows that Sortin2 treatment in yeast affects primarily components within the endomembrane system. This approach allowed us to assign putative functions in protein sorting for fifteen genes of previously unknown function.

Reference Type
Journal Article
Authors
Norambuena L, Zouhar J, Hicks GR, Raikhel NV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference