Take our Survey

Reference: Ju D, et al. (2008) Genome-wide analysis identifies MYND-domain protein Mub1 as an essential factor for Rpn4 ubiquitylation. Mol Cell Biol 28(4):1404-12

Reference Help

Abstract

The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the Rpn4 transcription factor upregulates the proteasome genes, and is rapidly degraded by the proteasome. Previous work has identified Ubr2 and Rad6 as the cognate E3 and E2 enzymes for Rpn4 ubiquitylation. However, our recent attempts to ubiquitylate Rpn4 using purified Ubr2 and Rad6 proteins in a reconstitution system have been unsuccessful, suggesting that an additional factor is required for Rpn4 ubiquitylation. Here we screen the entire collection of the single-gene deletion yeast mutants generated by the Saccharomyces Genome Deletion Project, and identify the mub1 Delta mutant defective in ubiquitin-dependent degradation of Rpn4. In vitro reconstitution ubiquitylation assay confirms that Mub1 is the missing factor for Rpn4 ubiquitylation. We further show that Mub1directly interacts with Ubr2 and Rpn4. The MYND domain of Mub1 may play an important role in Rpn4 ubiquitylation. Interestingly, Mub1 itself is a short-lived protein and its degradation is dependent on the Ubr2/Rad6 ubiquitin ligase. Together, these data suggest that Mub1 and Ubr2 cooperate to transfer ubiquitin to Rpn4 from Rad6 and that Mub1 may switch from a partner to a substrate of the Ubr2/Rad6 ubiquitin ligase.

Reference Type
Journal Article
Authors
Ju D, Wang X, Xu H, Xie Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference