Reference: Wu D, et al. (2007) Covert genetic selections to optimize phenotypes. PLoS One 2(11):e1200

Reference Help

Abstract

In many high complexity systems (cells, organisms, institutions, societies, economies, etc.), it is unclear which components should be regulated to affect overall performance. To identify and prioritize molecular targets which impact cellular phenotypes, we have developed a selection procedure ("SPI"-single promoting/inhibiting target identification) which monitors the abundance of ectopic cDNAs. We have used this approach to identify growth regulators. For this purpose, complex pools of S. cerevisiae cDNA transformants were established and we quantitated the evolution of the spectrum of cDNAs which was initially present. These data emphasized the importance of translation initiation and ER-Golgi traffic for growth. SPI provides functional insight into the stability of cellular phenotypes under circumstances in which established genetic approaches cannot be implemented. It provides a functional "synthetic genetic signature" for each state of the cell (i.e. genotype and environment) by surveying complex genetic libraries, and does not require specialized arrays of cDNAs/shRNAs, deletion strains, direct assessment of clonal growth or even a conditional phenotype. Moreover, it establishes a hierarchy of importance of those targets which can contribute, either positively or negatively, to modify the prevailing phenotype. Extensions of these proof-of-principle experiments to other cell types should provide a novel and powerful approach to analyze multiple aspects of the basic biology of yeast and animal cells as well as clinically-relevant issues.

Reference Type
Journal Article
Authors
Wu D, Townsley E, Tartakoff AM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference