Take our Survey

Reference: Rue SM, et al. (2008) Novel ist1-did2 complex functions at a late step in multivesicular body sorting. Mol Biol Cell 19(2):475-84

Reference Help

Abstract

Monitoring Editor: Sean Munro In S. cerevisiae, integral plasma membrane proteins destined for degradation and certain vacuolar membrane proteins are sorted into the lumen of the vacuole via the multivesicular body (MVB) sorting pathway, which depends on the sequential action of three endosomal sorting complexes required for transport (ESCRTs). Here, we report the characterization of a new positive modulator of MVB sorting, Ist1. We show that endosomal recruitment of Ist1 depends on ESCRT-III. Deletion of IST1 alone does not cause cargo sorting defects. However, synthetic genetic analysis of double mutants of IST1 and positive modulators of MVB sorting showed that ist1Delta is synthetic with vta1Delta and vps60Delta, indicating that Ist1 is also a positive component of the MVB sorting pathway. Moreover, this approach revealed that Ist1-Did2 and Vta1-Vps60 compose two functional units. Ist1-Did2 and Vta1-Vps60 form specific physical complexes, and, like Did2 and Vta1, Ist1 binds to the AAA-ATPase Vps4. We provide evidence that the ist1Delta mutation exhibits a synthetic interaction with mutations in VPS2 (DID4) that compromise the Vps2-Vps4 interaction. We propose a model in which the Ist1-Did2 and Vta1-Vps60 complexes independently modulate late steps in the MVB sorting pathway.

Reference Type
Journal Article
Authors
Rue SM, Mattei S, Saksena S, Emr SD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference