Take our Survey

Reference: Haass FA, et al. (2007) Identification of yeast proteins necessary for cell-surface function of a potassium channel. Proc Natl Acad Sci U S A 104(46):18079-18084

Reference Help

Abstract


Inwardly rectifying potassium (Kir) channels form gates in the cell membrane that regulate the flow of K(+) ions into and out of the cell, thereby influencing the membrane potential and electrical signaling of many cell types, including neurons and cardiomyocytes. Kir-channel function depends on other cellular proteins that aid in the folding of channel subunits, assembly into tetrameric complexes, trafficking of quality-controlled channels to the plasma membrane, and regulation of channel activity at the cell surface. We used the yeast Saccharomyces cerevisiae as a model system to identify proteins necessary for the functional expression of a mammalian Kir channel at the cell surface. A screen of 376 yeast strains, each lacking one nonessential protein localized to the early secretory pathway, identified seven deletion strains in which functional expression of the Kir channel at the plasma membrane was impaired. Six deletions were of genes with known functions in trafficking and lipid biosynthesis (sur4Delta, csg2Delta, erv14Delta, emp24Delta, erv25Delta, and bst1Delta), and one deletion was of an uncharacterized gene (yil039wDelta). We provide genetic and functional evidence that Yil039wp, a conserved, phosphoesterase domain-containing protein, which we named "trafficking of Emp24p/Erv25p-dependent cargo disrupted 1" (Ted1p), acts together with Emp24p/Erv25p in cargo exit from the endoplasmic reticulum (ER). The seven yeast proteins identified in our screen likely impact Kir-channel functional expression at the level of vesicle budding from the ER and/or the local lipid environment at the plasma membrane.

Reference Type
Journal Article
Authors
Haass FA, Jonikas M, Walter P, Weissman JS, Jan YN, Jan LY, Schuldiner M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference