Reference: Spégel CF, et al. (2007) Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells. Anal Chem 79(23):8919-26

Reference Help

Abstract


The two main metabolic pathways involved in sugar metabolism, i.e., the pentose phosphate pathway (PPP) and the glycolytic pathway (GP), were amperometrically monitored using a double-mediator system composed of menadione and ferricyanide. With the use of the Saccharomyces cerevisiae deletion mutant, EBY44, lacking the gene encoding for the branch point enzyme phosphoglucose isomerize, selective amperometric monitoring of the PPP, mainly producing NADPH, and the GP, mainly producing NADH, could be achieved. It was found that the bioelectrocatalytic current was primarily originating from NADPH. This conclusion was supported by metabolite flux analysis, confirming that, in the presence of menadione, the cells increase the rate of NADPH-producing reactions although these processes might be detrimental to cell survival. The higher rate of in vivo NADPH-dependent menadione reduction can be ascribed to the fact that the intracellular NADPH/NADP(+) ratio is much higher than NADH/NAD(+) as well as that the former ratio is more tightly controlled. This tight control over the cofactor ratios is lost upon cell disintegration as observed from spectrophotometric assays using crude cell extract, and amperometric investigations of permeabilized cells indicate a higher rate of NADH- than NADPH-dependent menadione reduction. These in vitro experiments show a higher activity of NADH-dependent than NADPH-dependent menadione-reducing dehydrogenases in S. cerevisiae cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Spégel CF, Heiskanen AR, Kostesha N, Johanson TH, Gorwa-Grauslund MF, Koudelka-Hep M, Emnéus J, Ruzgas T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference