Take our Survey

Reference: Zhang YQ and Rao R (2007) Global disruption of cell cycle progression and nutrient response by the antifungal agent amiodarone. J Biol Chem 282(52):37844-53

Reference Help

Abstract

The antiarrhythmic drug amiodarone has fungicidal activity against a broad range of fungi. In S. cerevisiae, it elicits an immediate influx of Ca2+ followed by mitochondrial fragmentation and eventual cell death. To dissect the mechanism of its toxicity, we assessed the transcriptional response of S. cerevisiae to amiodarone by DNA microarray. Consistent with the drug induced calcium burst, more than half of the differentially transcribed genes were induced by high levels of CaCl2. Amiodarone also caused rapid nuclear accumulation of the calcineurin regulated Crz1. The majority of genes induced by amiodarone within 10 minutes were involved in utilization of alternative carbon and nitrogen sources and in mobilizing energy reserves. The similarity to nutrient starvation responses seen in stationary phase cells, rapamycin treatment and late stages of shift to diauxic conditions and nitrogen depletion suggests that amiodarone may interfere with nutrient sensing and regulatory networks. Transcription of a set of nutrient-responsive genes was affected by amiodarone but not CaCl2, indicating that activation of the starvation response was independent of Ca2+. Genes down-regulated by amiodarone were involved in all stages of cell cycle control. A moderate dose of amiodarone temporarily delayed cell cycle progression at G1, S and G2/M phases, with the Swe1-mediated delay in G2/M phase being most prominent in a calcineurin-dependent manner. Overall, the transcriptional responses to amiodarone revealed by this study were found to be distinct from other classes of antifungals, including the azole drugs, pointing towards a novel target pathway in combating fungal pathogenesis.

Reference Type
Journal Article
Authors
Zhang YQ, Rao R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference