Take our Survey

Reference: Canavan R and Bond U (2007) Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in Saccharomyces cerevisiae. Nucleic Acids Res 35(18):6268-79

Reference Help

Abstract


The nuclear exosome, a macromolecular complex of 3' to 5' exonucleases, is required for the post-transcriptional processing of a variety of RNAs including rRNAs and snoRNAs. Additionally, this complex forms part of a nuclear surveillance network where it acts to degrade any aberrantly processed mRNAs in the nucleus. The exosome complex has been implicated in the biogenesis pathway of general messenger RNAs through its interaction with the 3'-end processing machinery. During the cell cycle, yeast histone mRNAs accumulate in the S-phase and are rapidly degraded as cells enter the G2-phase. To determine if the exosome contributes to the cyclic turnover of yeast histone mRNAs, we examined the pattern of accumulation of 'HTB1' mRNA during the cell cycle in a deletion strain of 'RRP6', a component of the nuclear exosome. Our results show that cells lacking Rrp6p continue to accumulate HTB1 mRNA as the cell cycle proceeds. This continued accumulation appears to result from a delay in exit from S-phase in rrp6 cells. The accumulation of HTB1 mRNA in rrp6 cells is influenced by the interaction of the nuclear exosome with the 3'-end processing machinery although there is no evidence for differential regulation of histone mRNA 3'-end processing during the yeast cell cycle.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Canavan R, Bond U
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference