Take our Survey

Reference: Yuan S and Li KC (2007) Context-dependent clustering for dynamic cellular state modeling of microarray gene expression. Bioinformatics 23(22):3039-47

Reference Help

Abstract


MOTIVATION: High-throughput expression profiling allows researchers to study gene activities globally. Genes with similar expression profiles are likely to encode proteins that may participate in a common structural complex, metabolic pathway, or biological process. Many clustering, classification and dimension reduction approaches, powerful in elucidating the expression data, are based on this rationale. However, the converse of this common perception can be misleading. In fact, many biologically related genes turn out uncorrelated in expression RESULTS: In this paper, we present a novel method for investigating gene co-expression patterns. We assume the correlation between functionally related genes can be strengthened or weakened according to changes in some relevant, yet unknown, cellular states. We develop a context-dependent clustering (CDC) method to model the cellular state variable. We apply it to the transcription regulatory study for Saccharomyces cerevisiae, using the Stanford cell-cycle gene expression data. We investigate the co-expression patterns between transcription factors (TFs) and their target genes (TGs) predicted by the genome-wide location analysis of Harbison et al. (2004). Since TF regulates the expression of its TGs, correlation between TFs and TGs expression profiles can be expected. But as many authors have observed, the expression of transcription factors do not correlate well with the expression of their target genes. Instead of attributing the main reason to the lack of correlation between the transcript abundance and TF activity, we search for cellular conditions that would facilitate the TF-TG correlation. The results for sulfur amino acid pathway regulation by MET4, respiratory genes regulation by HAP4, and mitotic cell cycle regulation by ACE2/SWI5 are discussed in detail. Our method suggests a new way to understand the complex biological system from microarray data. AVAILABILITY: The program is written in ANSI C. The source code could be downloaded from http://kiefer.stat.sinica.edu.tw/CDC/index.php CONTACT: kcli@stat.ucla.edu.

Reference Type
Journal Article
Authors
Yuan S, Li KC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference