Take our Survey

Reference: Klassen R, et al. (2007) Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae. DNA Repair (Amst) 6(12):1864-75

Reference Help

Abstract

The linear plasmid (pPac1-2) encoded killer toxin (PaT) of the yeast Pichia acaciae arrests sensitive Saccharomyces cerevisiae cells in the S-phase of the cell cycle and induces mutations. Here we provide evidence for opposite effects in PaT resistance of homologous recombination (HR) and non-homologous end joining (NHEJ), the two alternative repair mechanisms acting on DNA double strand breaks (DSB). As mutants defective in genes of the RAD52 epistasis group react hypersensitive and cells lacking YKU70 or YKU80 are partially resistant, the yKu70/80 complex facilitates PaT toxicity, whereas HR is antagonistic. In contrast to yku70 and yku80, lif1 mutants, the latter being defective in the ligation step of NHEJ, are PaT sensitive, confining toxicity promoting effects of NHEJ to the DSB end binding Ku proteins. Since rad52 yku80 double mutants display strong hypersensitivity, yku80 mediated resistance depends on HR. Opposite effects of the yKu70/80 complex and HR are consistent with the occurrence of replication dependent (one sided) DSBs in PaT treated cells. Concordantly, two cellular markers signaling DSBs are induced during PaT mediated S-phase arrest, i.e. histone H2A phosphorylation and formation of subnuclear repair foci by GFP tagged recombination protein Rad52. As only moderate chromosome fragmentation could be detected by PFGE, transient occurrence and efficient in vivo repair of PaT induced DSBs is assumed. Consistent with replication dependent DSB formation induced by PaT, we demonstrate a protective function of the RecQ helicase Sgs1 and the structure specific endonuclease Mus81, both of which are considered to be involved in processing and restart of stalled replication forks.

Reference Type
Journal Article
Authors
Klassen R, Krampe S, Meinhardt F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference