Reference: Parra MA and Wyrick JJ (2007) Regulation of Gene Transcription by the Histone H2A N-Terminal Domain. Mol Cell Biol 27(21):7641-8

Reference Help

Abstract


Histone N-terminal domains play critical roles in regulating chromatin structure and gene transcription. Relatively little is known, however, about the role of the histone H2A N-terminal domain in transcription regulation. We have used DNA microarrays to characterize the changes in genome-wide expression caused by mutations in the N-terminal domain of histone H2A. Our results indicate that the N-terminal domain of histone H2A functions primarily to repress the transcription of a large subset of the yeast genome, and that most of the H2A-repressed genes are also repressed by the histone H2B N-terminal domain. Using the histone H2A microarray data, we selected three reporter genes (BNA1, BNA2, and GCY1), which we subsequently used to map regions in the H2A N-terminal domain responsible for this transcriptional repression. These studies revealed that a small subdomain in the H2A N-terminal tail, comprised of residues 16 to 20, is required for the transcriptional repression of these reporter genes. Deletion of the either the entire histone H2A N-terminal domain or just this small subdomain imparts sensitivity to UV irradiation. Finally, we show that two residues in this H2A subdomain, serine-17 and arginine-18, are specifically required for the transcriptional repression of the BNA2 reporter gene.

Reference Type
Journal Article
Authors
Parra MA, Wyrick JJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference