Reference: Mattison CP, et al. (2007) Mps1 activation loop autophosphorylation enhances kinase activity. J Biol Chem 282(42):30553-61

Reference Help

Abstract


The Mps1 protein kinase is required for proper assembly of the mitotic spindle, checkpoint signaling, and several other aspects of cell growth and differentiation. Mps1 regulation is mediated by cell cycle-dependent changes in transcription and protein level. There is also a strong correlation between hyperphosphorylated mitotic forms of Mps1 and increased kinase activity. We investigated the role that autophosphorylation plays in regulating human Mps1 (hMps1) protein kinase activity. Here we report that hyperphosphorylated hMps1 forms are not the only active forms of the kinase. However, autophosphorylation of hMps1 within the activation loop is required for full activity in vitro. Mass spectrometry analysis of de novo synthesized enzyme in Escherichia coli identified autophosphorylation sites at residues Thr(675), Thr(676), and Thr(686), but phosphatase-treated and reactivated enzyme was only phosphorylated on Thr(676). Mutation of Thr(676) in hMps1 or the corresponding Thr(591) residue within yeast Mps1 reduces kinase activity in vitro. We find that overexpression of an hMps1-T676A mutation inhibits centrosome duplication in RPE1 cells. Likewise, yeast cells harboring mps1-T591A as the sole MPS1 allele are not viable. Our data strongly support the conclusion that site-specific Mps1 autophosphorylation within the activation loop is required for full activity in vitro and function in vivo.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Mattison CP, Old WM, Steiner E, Huneycutt BJ, Resing KA, Ahn NG, Winey M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference