Reference: Lushchak OV, et al. (2007) Growth on ethanol results in co-ordinated Saccharomyces cerevisiae response to inactivation of genes encoding superoxide dismutases. Redox Rep 12(4):181-8

Reference Help

Abstract


Superoxide dismutase (SOD) is an essential enzyme protecting cells against oxidative stress. However, its specific role under different conditions is not clear. To study the possible role of SOD in the cell during respiration, Saccharomyces cerevisiae single and double mutants with inactivated SOD1 and/or SOD2 genes growing on ethanol as an energy and carbon source were used. Activities of antioxidant and associated enzymes as well as the level of protein carbonyls were measured. SOD activity was significantly higher in a Mn-SOD deficient strain than that in the wild-type parental strain, but significantly lower in a Cu, Zn-SOD mutant. A strong positive correlation between SOD and catalase activities (R(2) = 0.99) shows possible protection of catalase by SOD from inactivation in vivo and/or decrease in catalase activity because of lower H(2)O(2) formation in the mutant cells. SOD deficiency resulted in a malate dehydrogenase activity increase, whereas glucose-6-phosphate dehydrogenase (G6PDH) activity was lower in SOD-deficient strains. Linear and non-linear positive correlations between SOD and isocitrate dehydrogenase activities are discussed. No changes in the activity of glutathione reductase and protein carbonyl levels support the idea that SOD-deficient cells are not exposed to strong oxidative stress during exponential growth of yeast cultures on ethanol.

Reference Type
Journal Article
Authors
Lushchak OV, Semchyshyn HM, Lushchak VI
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference