Take our Survey

Reference: Weinberger M, et al. (2007) DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS One 2(8):e748

Reference Help

Abstract


The chronological lifespan of eukaryotic organisms is extended by the mutational inactivation of conserved growth-signaling pathways that regulate progression into and through the cell cycle. Here we show that in the budding yeast S. cerevisiae, these and other lifespan-extending conditions, including caloric restriction and osmotic stress, increase the efficiency with which nutrient-depleted cells establish or maintain a cell cycle arrest in G1. Proteins required for efficient G1 arrest and longevity when nutrients are limiting include the DNA replication stress response proteins Mec1 and Rad53. Ectopic expression of CLN3 encoding a G1 cyclin downregulated during nutrient depletion increases the frequency with which nutrient depleted cells arrest growth in S phase instead of G1. Ectopic expression of CLN3 also shortens chronological lifespan in concert with age-dependent increases in genome instability and apoptosis. These findings indicate that replication stress is an important determinant of chronological lifespan in budding yeast. Protection from replication stress by growth-inhibitory effects of caloric restriction, osmotic and other stresses may contribute to hormesis effects on lifespan. Replication stress also likely impacts the longevity of higher eukaryotes, including humans.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Weinberger M, Feng L, Paul A, Smith DL Jr, Hontz RD, Smith JS, Vujcic M, Singh KK, Huberman JA, Burhans WC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference