Take our Survey

Reference: Millson SH, et al. (2007) Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90beta generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 274(17):4453-63

Reference Help

Abstract


Heat shock protein 90 (Hsp90) is a molecular chaperone required for the activity of many of the most important regulatory proteins of eukaryotic cells (the Hsp90 'clients'). Vertebrates have two isoforms of cytosolic Hsp90, Hsp90alpha and Hsp90beta. Hsp90beta is expressed constitutively to a high level in most tissues and is generally more abundant than Hsp90alpha, whereas Hsp90alpha is stress-inducible and overexpressed in many cancerous cells. Expressed as the sole Hsp90 of yeast, human Hsp90alpha and Hsp90beta are both able to provide essential Hsp90 functions. Activations of certain Hsp90 clients (heat shock transcription factor, v-src) were more efficient with Hsp90alpha, rather than Hsp90beta, present in the yeast. In contrast, activation of certain other clients (glucocorticoid receptor; extracellular signal-regulated kinase-5 mitogen-activated protein kinase) was less affected by the human Hsp90 isoform present in these cells. Remarkably, whereas expression of Hsp90beta as the sole Hsp90 of yeast rendered cells highly sensitive to the Hsp90 inhibitor radicicol, comparable expression of Hsp90alpha did not. This raises the distinct possibility that, also for mammalian systems, alterations to the Hsp90alpha/Hsp90beta ratio (as with heat shock) might be a significant factor affecting cellular susceptibility to Hsp90 inhibitors.

Reference Type
Journal Article
Authors
Millson SH, Truman AW, Racz A, Hu B, Panaretou B, Nuttall J, Mollapour M, Soti C, Piper PW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference