Take our Survey

Reference: Meisinger C, et al. (2007) The morphology proteins Mdm12/Mmm1 function in the major beta-barrel assembly pathway of mitochondria. EMBO J 26(9):2229-39

Reference Help

Abstract


The beta-barrel proteins of mitochondria are synthesized on cytosolic ribosomes. The proteins are imported by the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been assumed that the SAM(core) complex with the subunits Sam35, Sam37 and Sam50 represents the last import stage common to all beta-barrel proteins, followed by splitting in a Tom40-specific route and a route for other beta-barrel proteins. We have identified new components of the beta-barrel assembly machinery and show that the major beta-barrel pathway extends beyond SAM(core). Mdm12/Mmm1 function after SAM(core) yet before splitting of the major pathway. Mdm12/Mmm1 have been known for their role in maintenance of mitochondrial morphology but we reveal assembly of beta-barrel proteins as their primary function. Moreover, Mdm10, which functions in the Tom40-specific route, can associate with SAM(core) as well as Mdm12/Mmm1 to form distinct assembly complexes, indicating a dynamic exchange between the machineries governing mitochondrial beta-barrel assembly. We conclude that assembly of mitochondrial beta-barrel proteins represents a major function of the morphology proteins Mdm12/Mmm1.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Meisinger C, Pfannschmidt S, Rissler M, Milenkovic D, Becker T, Stojanovski D, Youngman MJ, Jensen RE, Chacinska A, Guiard B, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference