Reference: Chitavichius D (2001) [Genetic control of growth and development of yeast Saccharomyces cerevisiae cells. Phenotypic selection of mutants among strains of the Peterhof genetic collection]. Genetika 37(6):762-9

Reference Help

Abstract

Results of identifying phenotypes intrinsic to mutations of genes that regulate the activity of the signal transduction pathway of RAS-cyclic adenosinemonophosphate in six strains belonging to the Peterhof genetic collection of the yeast Saccharomyces cerevisiae are presented: an increase or decrease in the amount of the accumulated glycogen, resistance or sensitivity to heat shock and nitrogen starvation, and the growth and viability in media containing unfermentable carbon sources (potassium acetate, ethanol, and glycerol) at temperatures 30 and 70 degrees C. Collectively these phenotypic characteristics in five examined yeast strains can be interpreted as indicating disturbances in the activity of the RAS/cAMP pathway. However, the discrepancies revealed between cellular phenotypes in these strains and in the strains with a decreased or increased activity of the RAS/cAMP pathway did not allow them to be assigned to a particular functional activity group. The inconsistencies between phenotypes detected in this study may be prerequisites for the identification of new genes responsible for this signal transduction pathway or new mutations in the known genes that determine other phenotypic combinations.

Reference Type
Journal Article | English Abstract
Authors
Chitavichius D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference