Reference: Nakashima K, et al. (1996) Chimeras of yeast and chicken calmodulin demonstrate differences in activation mechanisms of target enzymes. Biochemistry 35(17):5602-10

Reference Help

Abstract

Various chimeric proteins were constructed from yeast (Saccharomyces cerevisiae) and chicken calmodulin (CaM), and regions essential for target activation and responsible for the specific features of the yeast CaM were identified. The chimeric CaMs were designed so that each Ca2+ binding site of the yeast CaM was replaced in series from the C-terminus. Resulting CaM proteins showed Ca2+ binding properties inherent to the original Ca2+ binding site. Cooperative Ca2+ binding and a suitable rearrangement of the two EF-hand sites in each half-molecular domain were shown to be important for high-affinity interaction with CaM-dependent cyclic nucleotide phosphodiesterase (PDE). Residues in chicken CaM sequences 129-148 and 88-128, respectively, were required for low values of Kact (the concentration of CaM required for the half-maximal activation) in the activation of PDE and myosin light chain kinase (skMLCK and smMLCK). The difference in the structural requirements indicated different manners of the interaction. While PDE was activated to similar levels by different chimeras, the maximum activity (Vmax) given by chicken CaMs was not achieved by any chimeric CaMs in MLCKs. Residues in chicken CaM sequences 1-50 and 88-129, in addition to Ca2+ binding to the fourth site, were important for high values of Vmax of skMLCK. On the other hand, Met51 and residues in chicken CaM sequence 88-129 were critical for the high Vmax of smMLCK. These residues may work to form the active structure of the catalytic site of each MLCK, while simple binding of CaM seems sufficient to expose the active site of PDE.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Nakashima K, Maekawa H, Yazawa M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference