Take our Survey

Reference: Shahi P, et al. (2007) Negative transcriptional regulation of multidrug resistance gene expression by an Hsp70 protein. J Biol Chem 282(37):26822-31

Reference Help

Abstract

One of the most common origins of multidrug resistance occurs via the overproduction of ATP-binding cassette (ABC) transporter proteins. These ABC transporters then act as broad specificity drug pumps and efflux a wide range of toxic agents out of the cell. The yeast Saccharomyces cerevisiae exhibits multiple or pleiotropic drug resistance (Pdr) often through the overproduction of a plasma membrane-localized ABC transporter protein called Pdr5p. Expression of the PDR5 gene is controlled by two zinc cluster-containing transcription factors called Pdr1p and Pdr3p. Cells that lack their mitochondrial genome (0 cells) strongly induce PDR5 transcription in a Pdr3p-dependent fashion. To identify proteins associated with Pdr3p that might act to regulate this factor, a tandem affinity purification (TAP) moiety was fused to Pdr3p and this recombinant protein purified from yeast cells. The cytosolic Hsp70 chaperone Ssa1p co-purified with TAP-Pdr3p. Overexpression of Ssa1p repressed expression of PDR5 but had no effect on expression of other genes involved in the Pdr phenotype. This Ssa1p-mediated repression required the presence of Pdr3p and did not influence Pdr1p-dependent gene expression. Loss of the nucleotide exchange factor Fes1p mimicked Ssa1p-mediated repression of PDR5. Co-immunoprecipitation experiments indicated that Ssa1p was associated with Pdr3p but not Pdr1p in yeast cells. Finally, 0 cells had less Ssa1p bound to Pdr3p than + cells, consistent with Ssa1p-mediated repression of Pdr3p activity serving as a key regulatory step in control of multidrug resistance in yeast.

Reference Type
Journal Article
Authors
Shahi P, Gulshan K, Moye-Rowley WS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference