Take our Survey

Reference: Wilson D, et al. (2007) Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans. Mol Microbiol 65(4):841-56

Reference Help

Abstract

Previously, we have shown that PDE2 is required for hyphal development and cell wall integrity in Candida albicans. In the present study, we have investigated the effects of its deletion by genome-wide transcriptome profiling. Changes in expression levels of genes involved in metabolism, transcription, protein and nucleic acids synthesis, as well as stress responses, cell wall and membrane biogenesis, adherence and virulence have been observed. By comparing these changes with previously reported transcriptome profiles of pde2Delta mutants of Saccharomyces cerevisiae, as well as cdc35Delta, ras1Delta and efg1Delta mutants of C. albicans, conserved and species-specific cAMP-regulated genes have been identified. The genes whose transcription is altered upon deletion of PDE2 in C. albicans has also allowed us to predict that the pde2Delta mutant would have a defective ability to adhere to, and invade host cells, and an impaired virulence as well as response to different stresses. Using appropriate assays, we have tested these predictions and compared the roles of the high- and low-affinity cAMP phosphodiesterases, Pde2p and Pde1p in stress, adhesion and virulence. We suggest that phosphodiesterases, and in particular the high-affinity cAMP phosphodiesterase encoded by PDE2, have real potential as targets for antifungal chemotherapy.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wilson D, Tutulan-Cunita A, Jung W, Hauser NC, Hernandez R, Williamson T, Piekarska K, Rupp S, Young T, Stateva L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference