Take our Survey

Reference: Krasowska A, et al. (2007) Assaying the antioxidant and radical scavenging properties of aliphatic mono- and di-N-oxides in superoxide dismutase-deficient yeast and in a chemiluminescence test. Folia Microbiol (Praha) 52(1):45-51

Reference Help

Abstract


The antioxidative action of amphiphilic mono-(alkanoylamino) ethyldimethylamine-N-oxides (EDA), di-N-oxides 1,1-bis {[2-(N,N-dimethylamino)ethyl]amido}alkane-di-N-oxides (MEDA) and 1,1-bis {[3-(N,N-dimethylamino)propyl]amido}alkane-di-N-oxides (MPDA) with a 12- and 14-membered acyl chain against tert-butylhydroperoxide (TBHP)-produced peroxyl and paraquat (PQ)-generated superoxide radicals was determined in superoxide dismutase-deficient mutants of Saccharomyces cerevisiae, and, in parallel, in a chemical assay based on chemiluminescence changes caused in a luminol system by peroxyl radicals generated from the azo-compound 2,2'-azobis(2-amidinopropane dihydrochloride) (AAPH). At 30 micromol/L, the shorter-chain compounds did not affect strain survival while longer-chain ones, in some cases, lowered the survival of sod2 and sod1 sod2 cells. Whether nontoxic or medium-toxic, all N-oxides protected the sod strains against the toxic effect of PQ and TBHP, the protection being stronger with the di-N-oxides. The survival was lowered only by 14-MPDA in the TBHP-exposed sod2 mutant. Membrane lipids isolated from all strains were protected against TBHP-induced peroxidation by both mono- and di-N-oxides, the protection being dependent on the alkyl chain length. Mono-N-oxides were again less active than di-N-oxides with the same alkyl chains, the antiperoxidative activity being also dependent on lipids isolated from the individual mutants. In the chemiluminescence assay, the IC50 value of the N-oxides for scavenging of radicals generated from AAPH generally decreased (i.e. the scavenging efficiency increased) with increasing chain length and was the highest in MEDA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Krasowska A, Piasecki A, Murzyn A, Sigler K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference