Reference: Daniel J (2007) Direct in vivo access to potential gene targets of the RPD3 histone deactylase using fitness-based interferential genetics. Yeast 24(7):575-87

Reference Help

Abstract


Using the fitness-based interferential genetics (FIG) approach in yeast, potential in vivo gene targets of the Rpd3 histone deacetylase were selected. In agreement with previous studies using different methods, three genes were found to be involved in the translational machinery (MRPL27, FHL1 and RDN1). Moreover, other selected genes are linked to cell-cycle control (CSE4, AMN1, VAC17 and GRR1). In addition to playing a crucial role in cell cycle progression to the S phase and participating in the G(2)-M transition, GRR1 has important functions related to nutrient import to the cell via the the derepression of hexose transporters and the induction of amino acid permeases. Consistent with this, FIG selection also retrieved: the PMA1 gene, encoding the plasma H(+)-membrane ATPase; FOL2 and FOL3, involved in folic acid biosynthesis; and UBR2, which indirectly downregulates the proteasome genes. Finally, the other selected genes, ISU1, involved in the biosynthesis of the iron-sulphur cluster in mitochondria, and the less well functionally defined BSC5 and YBR270c, may participate in the cell's antioxidant and stress defence. The genes emerging from this FIG selection thus appear to be part of the downstream molecular mechanisms of the TOR signalling pathway, accounting for its effects on cell proliferation and longevity. From our results on gene expression under conditions of RPD3 overexpression, and by comparison with the available pharmacogenomics studies, it is proposed that FIG could be an invaluable approach for contributing to our understanding of complex cell regulatory systems.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Daniel J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference