Take our Survey

Reference: Pope GA, et al. (2007) Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24(8):667-79

Reference Help

Abstract


The characterization of industrial yeast strains by examining their metabolic footprints (exometabolomes) was investigated and compared to genome-based discriminatory methods. A group of nine industrial brewing yeasts was studied by comparing their metabolic footprints, genetic fingerprints and comparative genomic hybridization profiles. Metabolic footprinting was carried out by both direct injection mass spectrometry (DIMS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), with data analysed by principal components analysis (PCA) and canonical variates analysis (CVA). The genomic profiles of the nine yeasts were compared by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis, genetic fingerprinting using amplified fragment length polymorphism (AFLP) analysis and microarray comparative genome hybridizations (CGH). Metabolomic and genomic analysis comparison of the nine brewing yeasts identified metabolomics as a powerful tool in separating genotypically and phenotypically similar strains. For some strains discrimination not achieved genomically was observed metabolomically.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Pope GA, MacKenzie DA, Defernez M, Aroso MA, Fuller LJ, Mellon FA, Dunn WB, Brown M, Goodacre R, Kell DB, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference