Take our Survey

Reference: Ragu S, et al. (2007) Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci U S A 104(23):9747-52

Reference Help

Abstract


The absence of Tsa1, a key peroxiredoxin that functions to scavenge H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations including gross chromosomal rearrangements (GCRs). Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD6 and several key genes involved in DNA double-strand break repair. In the present study we investigated the causes of GCRs and cell death in these mutants. tsa1-associated GCRs were independent of the activity of the translesion DNA polymerases zeta, eta, and Rev1. Anaerobic growth reduced substantially GCR rates of WT and tsa1 mutants and restored the viability of tsa1 rad6, tsa1 rad51, and tsa1 mre11 double mutants. Anaerobic growth also reduced the GCR rate of rad27, pif1, and rad52 mutants, indicating a role of reactive oxygen species in GCR formation in these mutants. In addition, deletion of TSA1 or H2O2 treatment of WT cells resulted in increased formation of Rad52 foci, sites of repair of multiple DNA lesions. H2O2 treatment also induced the GCRs. Our results provide in vivo evidence that oxygen metabolism and reactive oxygen species are important sources of DNA damages that can lead to GCRs and lethal effects in S. cerevisiae.

Reference Type
Journal Article
Authors
Ragu S, Faye G, Iraqui I, Masurel-Heneman A, Kolodner RD, Huang ME
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference