Reference: Vasconcellos MC, et al. (2007) Genotoxicity of 15-deoxygoyazensolide in bacteria and yeast. Mutat Res 631(1):16-25

Reference Help

Abstract

Sesquiterpene lactones (SLs) present a wide range of pharmacological activities. The aim of our study was to investigate the genotoxicity of 15-deoxygoyazensolide using the Salmonella/microsome assay and the yeast Saccharomyces cerevisiae. We also investigated the nature of induced DNA damage using yeast strains defective in DNA repair pathways, such as nucleotide excision repair (RAD3), error prone repair (RAD6), and recombinational repair (RAD52), and in DNA metabolism, such as topoisomerase mutants. 15-deoxygoyasenzolide was not mutagenic in Salmonella typhimurium, but it was mutagenic in S. cerevisiae. The hypersensitivity of the rad52 mutant suggests that recombinational repair is critical for processing lesions resulting from 15-deoxygoyazensolide-induced DNA damage, whereas excision repair and mutagenic systems does not appear to be primarily involved. Top 1 defective yeast strain was highly sensitive to the cytotoxic activity of 15-deoxygoyazensolide, suggesting a possible involvement of this enzyme in the reversion of the putative complex formation between DNA and this SL, possibly due to intercalation. Moreover, the treatment with this lactone caused dose-dependent glutathione depletion, generating pro-oxidant status which facilitates oxidative DNA damage, particularly DNA breaks repaired by the recombinational system ruled by RAD52 in yeast. Consistent with this finding, the absence of Top1 directly affects chromatin remodeling, allowing repair factors to access oxidative damage, which explains the high sensitivity to top1 strain. In summary, the present study shows that 15-deoxygoyazensolide is mutagenic in yeast due to the possible intercalation effect, in addition to the pro-oxidant status that exacerbates oxidative DNA damage.

Reference Type
Journal Article
Authors
Vasconcellos MC, Rosa RM, Machado MS, Villela IV, Crotti AE, Lopes JL, Pessoa C, de Moraes MO, Lopes NP, Costa-Lotufo LV, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference