Reference: Torres MP and Borchers CH (2007) Mitotic phosphorylation of the anaphase-promoting complex inhibitory subunit Mnd2 is necessary for efficient progression through meiosis i. J Biol Chem 282(24):17351-62

Reference Help

Abstract


The yeast anaphase-promoting complex (APC) subunit Mnd2 is necessary for maintaining sister chromatid cohesion in prophase I of meiosis by inhibiting premature ubiquitination and subsequent degradation of substrates by the APC(Ama1) ubiquitin ligase. In a proteomics screen for post-translational modifications on the APC, we discovered that Mnd2 is phosphorylated during mitosis in a cell cycle-dependent manner. We identified and characterized the sites of mitotic Mnd2 phosphorylation during the cell cycle. Collective mutation of Mnd2 phosphorylation sites to alanine had no effect on vegetative growth but a striking effect (>85% reduction) on the percentage of tetrad-forming cells compared with the wild type strain. Similar to the MND2 deletion strain, cells harboring the alanine mutant that did not form spores arrested after premeiotic S phase with a single undivided nucleus and low levels of the APC(Ama1) meiotic substrate, Clb5, relative to wild type cells. In contrast, collective mutation of Mnd2 phosphorylation sites to aspartic acid resulted in partial suppression of the sporulation defect. No differences were observed in the binding between each Mnd2 isoform and the APC in vitro. However, in vivo, we observed a gradient in the abundance of APC-associated Mnd2 in each strain that was proportional to the observed differences in sporulation and Clb5 levels. Taken together, these data suggest that mitotic phosphorylation of Mnd2 is necessary for APC-mediated progression beyond the first meiotic nuclear division.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Torres MP, Borchers CH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference