Take our Survey

Reference: Ratts R, et al. (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160(7):1139-50

Reference Help

Abstract


In vitro delivery of the diphtheria toxin catalytic (C) domain from the lumen of purified early endosomes to the external milieu requires the addition of both ATP and a cytosolic translocation factor (CTF) complex. Using the translocation of C-domain ADP-ribosyltransferase activity across the endosomal membrane as an assay, the CTF complex activity was 650-800-fold purified from human T cell and yeast extracts, respectively. The chaperonin heat shock protein (Hsp) 90 and thioredoxin reductase were identified by mass spectrometry sequencing in CTF complexes purified from both human T cell and yeast. Further analysis of the role played by these two proteins with specific inhibitors, both in the in vitro translocation assay and in intact cell toxicity assays, has demonstrated their essential role in the productive delivery of the C-domain from the lumen of early endosomes to the external milieu. These results confirm and extend earlier observations of diphtheria toxin C-domain unfolding and refolding that must occur before and after vesicle membrane translocation. In addition, results presented here demonstrate that thioredoxin reductase activity plays an essential role in the cytosolic release of the C-domain. Because analogous CTF complexes have been partially purified from mammalian and yeast cell extracts, results presented here suggest a common and fundamental mechanism for C-domain translocation across early endosomal membranes.

Reference Type
Comment | Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference