Reference: Martin R, et al. (2007) Functional analysis of Candida albicans genes whose Saccharomyces cerevisiae homologues are involved in endocytosis. Yeast 24(6):511-22

Reference Help

Abstract


PCR-based techniques for directed gene alterations have become standard tools in Candida albicans. To help to increase the speed of functional analysis of Candida albicans genes, we previously constructed and updated a modular set of pFA-plasmid vectors for PCR-based gene targeting in C. albicans. Here we report the functional analyses of C. albicans ORFs whose homologues in S. cerevisiae are involved in endocytosis, to explore their potential involvement in polarized cell growth. Three C. albicans genes, ABP1, BZZ1 and EDE1, were found to be non-essential. Yeast and hyphal morphogenesis were not affected by the individual deletions and the mutant strains appeared wild-type-like under the different growth conditions tested. On the other hand, deletion of both alleles of the C. albicans PAN1 homologue was not feasible. Promoter shut-down experiments using a MET3p-PAN1/pan1 strain indicated severe growth defects and abolished endocytosis, indicating that PAN1 is an essential gene. Subcellular distribution of CaAbp1 and CaPan1 was analysed via GFP-tagged proteins. Both proteins were found to localize at the cortex and at hyphal tips in a patch-like manner, supporting their role in endocytosis. Localization patterns of Abp1 and Pan1, however, were distinct from that of the FM4-64 stained Spitzenkorper. Copyright (c) 2007 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Martin R, Hellwig D, Schaub Y, Bauer J, Walther A, Wendland J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference