Reference: Kreiman G (2004) Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Res 32(9):2889-900

Reference Help

Abstract


Sequence information and high-throughput methods to measure gene expression levels open the door to explore transcriptional regulation using computational tools. Combinatorial regulation and sparseness of regulatory elements throughout the genome allow organisms to control the spatial and temporal patterns of gene expression. Here we study the organization of cis-regulatory elements in sets of co-regulated genes. We build an algorithm to search for combinations of transcription factor binding sites that are enriched in a set of potentially co-regulated genes with respect to the whole genome. No knowledge is assumed about involvement of specific sets of transcription factors. Instead, the search is exhaustively conducted over combinations of up to four binding sites obtained from databases or motif search algorithms. We evaluate the performance on random sets of genes as a negative control and on three biologically validated sets of co-regulated genes in yeasts, flies and humans. We show that we can detect DNA regions that play a role in the control of transcription. These results shed light on the structure of transcription regulatory regions in eukaryotes and can be directly applied to clusters of co-expressed genes obtained in gene expression studies. Supplementary information is available at http://www.mit.edu/ approximately kreiman/resources/cisregul/.

Reference Type
Evaluation Studies | Journal Article | Research Support, Non-U.S. Gov't
Authors
Kreiman G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference