Take our Survey

Reference: Daran-Lapujade P, et al. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125-38

Reference Help

Abstract


In contrast to batch cultivation, chemostat cultivation allows the identification of carbon source responses without interference by carbon-catabolite repression, accumulation of toxic products, and differences in specific growth rate. This study focuses on the yeast Saccharomyces cerevisiae, grown in aerobic, carbon-limited chemostat cultures. Genome-wide transcript levels and in vivo fluxes were compared for growth on two sugars, glucose and maltose, and for two C2-compounds, ethanol and acetate. In contrast to previous reports on batch cultures, few genes (180 genes) responded to changes of the carbon source by a changed transcript level. Very few transcript levels were changed when glucose as the growth-limiting nutrient was compared with maltose (33 transcripts), or when acetate was compared with ethanol (16 transcripts). Although metabolic flux analysis using a stoichiometric model revealed major changes in the central carbon metabolism, only 117 genes exhibited a significantly different transcript level when sugars and C2-compounds were provided as the growth-limiting nutrient. Despite the extensive knowledge on carbon source regulation in yeast, many of the carbon source-responsive genes encoded proteins with unknown or incompletely characterized biological functions. In silico promoter analysis of carbon source-responsive genes confirmed the involvement of several known transcriptional regulators and suggested the involvement of additional regulators. Transcripts involved in the glyoxylate cycle and gluconeogenesis showed a good correlation with in vivo fluxes. This correlation was, however, not observed for other important pathways, including the pentose-phosphate pathway, tricarboxylic acid cycle, and, in particular, glycolysis. These results indicate that in vivo fluxes in the central carbon metabolism of S. cerevisiae grown in steadystate, carbon-limited chemostat cultures are controlled to a large extent via post-transcriptional mechanisms.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference