Take our Survey

Reference: Kahl CR and Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24(6):719-36

Reference Help

Abstract


Many hormones, growth factors, and cytokines regulate proliferation of their target cells. Perhaps the most universal signaling cascades required for proliferative responses are those initiated by transient rises in intracellular calcium (Ca(2+)). The major intracellular receptor for Ca(2+) is calmodulin (CaM). CaM is a small protein that contains four EF-hand Ca(2+) binding sites and is highly conserved among eukaryotes. In all organisms in which the CaM gene has been deleted, it is essential. Although Ca(2+)/CaM is required for proliferation in both unicellular and multicellular eukaryotes, the essential targets of Ca(2+)/CaM-dependent pathways required for cell proliferation remain elusive. Potential Ca(2+)/CaM-dependent targets include the serine/threonine phosphatase calcineurin and the family of multifunctional Ca(2+)/CaM-dependent protein kinases. Whereas these enzymes are essential in Aspergillus nidulans, they are not required under normal growth conditions in yeast. However, in mammalian cells, studies demonstrate that both types of enzymes contribute to the regulation of cell cycle progression. Unfortunately, the mechanism by which Ca(2+)/CaM and its downstream targets, particularly calcineurin and the Ca(2+)/CaM-dependent protein kinases, regulate key cell cycle-regulatory proteins, remains enigmatic. By understanding how Ca(2+)/CaM regulates cell cycle progression in normal mammalian cells, we may gain insight into how hormones control cell division and how cancer cells subvert the need for Ca(2+) and its downstream targets to proliferate.

Reference Type
Journal Article | Review | Research Support, U.S. Gov't, P.H.S.
Authors
Kahl CR, Means AR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference