Reference: Zofall M and Grewal SI (2007) HULC, a Histone H2B Ubiquitinating Complex, Modulates Heterochromatin Independent of Histone Methylation in Fission Yeast. J Biol Chem 282(19):14065-72

Reference Help

Abstract


Heterochromatin in fission yeast is targeted dynamically by opposing chromatin-modifying activities capable of alleviating or promoting transcriptional gene silencing. In this paper, we report biochemical and genetic characterization of an ubiquitin-conjugating enzyme Rhp6 (a homolog of budding yeast Rad6), which has been shown to negatively affect stability of heterochromatic structures. We show that Rhp6 is a component of multi-subunit protein complex (termed HULC) that also contains two RING finger proteins Rfp1 and Rfp2, sharing homology to budding yeast Bre1 protein, and a unique serine rich protein, Shf1. HULC is required for ubiquitination of histone H2B at lysine 119 (H2B-K119) and it localizes to heterochromatic sequences. Moreover, our analyses suggest that Rhp6-induced changes in heterochromatic silencing are mediated predominantly through H2B ubiquitination (ubH2B), and correlate with increased RNA polymerase II levels at repeat elements embedded within heterochromatin domains. Interestingly, heterochromatic derepression caused by Rhp6 occurs independently of the involvement of HULC subunits and ubH2B in methylation of histone H3 at lysine 4 (H3K4me). These analyses implicate H2B ubiquitination in modulation of heterochromatin, which has important implications for dynamics and many functions associated with heterochromatic structures.

Reference Type
Journal Article
Authors
Zofall M, Grewal SI
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference