Take our Survey

Reference: Chen M and Lopes JM (2007) Multiple Basic Helix-Loop-Helix Proteins Regulate Expression of the ENO1 Gene of Saccharomyces cerevisiae. Eukaryot Cell 6(5):786-96

Reference Help

Abstract

The basic helix-loop-helix (bHLH) eukaryotic transcription factors have the ability to form multiple dimer combinations. This property together with the limited DNA-binding specificity to the E-box (CANNTG) makes them ideally suited for combinatorial control of gene expression. We tested the ability of all 9 Saccharomyces cerevisiae bHLH proteins to regulate the enolase-encoding gene, ENO1. ENO1 was known to be activated by the bHLH protein, Sgc1p. Here, we show that expression of an ENO1-lacZ reporter was also regulated by the other 8 bHLH proteins: Ino2p, Ino4p, Cbf1p, Rtg1p, Rtg3p, Pho4p, Hms1p, and Ygr290wp. ENO1-lacZ expression was also repressed by growth in inositol/choline-containing (I+C+) media. Epistatic analysis and Chromatin Immunoprecipitation (ChIP) experiments showed that regulation by Sgc1p, Ino2p, Ino4p, Cbf1p, and repression by inositol/choline required three distal E-boxes: E1, E2, and E3. The pattern of bHLH binding to the 3 E-boxes and experiments with two dominant-negative mutant alleles of INO4 and INO2 support the model that bHLH dimer selection affects ENO1-lacZ expression. These results support the general model that bHLH proteins can coordinate different biological pathways via multiple mechanisms.

Reference Type
Journal Article
Authors
Chen M, Lopes JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference