Reference: Yadav J, et al. (2007) A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 18(4):1480-9

Reference Help

Abstract


The Golgi-localized Ca2+- and Mn2+-transporting ATPase Pmr1 is important for secretory pathway functions. Yeast mutants lacking Pmr1 show growth sensitivity to multiple drugs (amiodarone, wortmannin, sulfometuron methyl, and tunicamycin) and ions (Mn2+ and Ca2+). To find components that function within the same or parallel cellular pathways as Pmr1, we identified genes that shared multiple pmr1 phenotypes. These genes were enriched in functional categories of cellular transport and interaction with cellular environment, and predominantly localize to the endomembrane system. The vacuolar-type H+-transporting ATPase (V-ATPase), rather than other Ca2+ transporters, was found to most closely phenocopy pmr1Delta, including a shared sensitivity to Zn2+ and calcofluor white. However, we show that pmr1Delta mutants maintain normal vacuolar and prevacuolar pH and that the two transporters do not directly influence each other's activity. Together with a synthetic fitness defect of pmr1DeltavmaDelta double mutants, this suggests that Pmr1 and V-ATPase work in parallel toward a common function. Overlaying data sets of growth sensitivities with functional screens (carboxypeptidase secretion and Alcian Blue binding) revealed a common set of genes relating to Golgi function. We conclude that overlapping phenotypes with Pmr1 reveal Golgi-localized functions of the V-ATPase and emphasize the importance of calcium and proton transport in secretory/prevacuolar traffic.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Yadav J, Muend S, Zhang Y, Rao R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference