Take our Survey

Reference: Poplinski A, et al. (2007) Ste50 adaptor protein influences Ras/cAMP-driven stress-response and cell survival in Saccharomyces cerevisiae. Curr Genet 51(4):257-68

Reference Help

Abstract


The Ste50 adaptor protein is involved in a variety of cellular pathways that yeast cells use to adapt rapidly to environmental changes. A highly activated Ras-cyclic AMP (cAMP) pathway by deletion of the high-affinity cAMP-dependent phosphodiesterase 2 (PDE2) leads to repression of a stress mediated response and cell survival. Here we show that inactivation of STE50 confers a synthetic genetic interaction with pde2Delta. A hyperosmotic stress growth defect of ste50Delta pde2Delta cells is exacerbated by extracellular cAMP or by galactose as the sole carbon source in the medium. The inactivation of the serine/threonine protein-kinase Akt homologue Sch9 increase stress resistance and extend chronological life span. By pde2Delta-dependent increase of the Ras-cAMP pathway activity, inactivation of STE50 results in an extreme shortening of life span and oxidative stress sensitivity of sch9Delta mutants. Furthermore, sch9Delta can promote transcription of the small heat shock protein HSP26 in a PDE2-dependent manner; however, sch9Delta can promote transcription of the mitochondrial superoxide dismutase SOD2 in a PDE2- and STE50-dependent manner. These data indicate that inactivation of STE50 influences stress tolerance in mutants of the Ras-cAMP pathway, which is a major determinant of intrinsic stress tolerance and cell survival of the Saccharomyces cerevisiae.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Poplinski A, Hopp C, Ramezani-Rad M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference