Take our Survey

Reference: Yen WL and Klionsky DJ (2007) Atg27 is a Second Transmembrane Cycling Protein. Autophagy 3(3):254-6

Reference Help

Abstract

Autophagy is a degradative pathway conserved among all eukaryotic cells, and is responsible for the turnover of damaged organelles and long-lived proteins. The primary morphological feature of autophagy is the sequestration of cargo within a double-membrane cytosolic vesicle called an autophagosome. More than 25 AuTophaGy-related (ATG) genes that are essential for autophagy have been identified from the yeast Saccharomyces cerevisiae.(1) Despite the identification and characterization of Atg proteins, it remains a mystery how the double-membrane vesicle is made, what the membrane source(s) are, and how the lipid is transported to the forming vesicle. Among Atg proteins, Atg9 was the only characterized transmembrane protein required for the formation of double-membrane vesicles. Evidence has been obtained in yeast and mammalian cells for Atg9 cycling between different peripheral compartments and the phagophore assembly site/preautophagosomal structure (PAS), the proposed site of organization for autophagosome formation.(2,3) This cycling feature makes Atg9 a potential membrane carrier to deliver lipids that are used in the vesicle formation process.(2) Recently, in our lab we characterized a second transmembrane protein, Atg27. The unique localization and cycling features of Atg27 suggest the involvement of the Golgi complex in the autophagy pathway. In this addendum, we discuss the trafficking of Atg27 in yeast and compare it with that of Atg9, and consider the possible meaning of Atg27 Golgi localization.

Reference Type
Journal Article
Authors
Yen WL, Klionsky DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference