Reference: Dicarlo CM, et al. (2007) Effect of active site and surface mutations on the reduction potential of yeast cytochrome c peroxidase and spectroscopic properties of the oxidized and reduced enzyme. J Inorg Biochem 101(4):603-13

Reference Help

Abstract

The reduction potentials of 22 yeast cytochrome c peroxidase (CcP) mutants were determined at pH 7.0 in order to determine the effect of both heme pocket and surface mutations on the Fe(III)/Fe(II) redox couple of CcP, as well as to determine the range in redox potentials that could be obtained through point mutations in the enzyme. Spectroscopic properties of the Fe(III) and Fe(II) forms of the mutant enzymes are also reported. The mutations include variants in the distal and proximal heme pockets as well as on the enzyme surface and involve single, double, and triple point mutations. A spectrochemical redox titration technique used in this study gave an E(0') value of -189 mV for yeast CcP compared to a previously reported value of -194 mV determined by potentiometry [C.W. Conroy, P. Tyma, P.H. Daum, J.E. Erman, Biochim. Biophys. Acta 537 (1978) 62-69]. Both positive and negative shifts in the reduction potential from that of the wild-type enzyme were observed, spanning a range of 113 mV. The His-52-->Asn mutation gave the most negative potential, -259 mV, while a triple mutant in which the three distal pocket residues, Arg-48, Trp-51, and His-52, were all converted to leucine residues gave the most positive potential, -146 mV.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Dicarlo CM, Vitello LB, Erman JE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference