Reference: Sidorova M, et al. (2007) Loss-of-function pdr3 mutations convert the Pdr3p transcription activator to a protein suppressing multidrug resistance in Saccharomyces cerevisiae. FEMS Yeast Res 7(2):254-64

Reference Help

Abstract


The PDR1 and PDR3 genes encode the main transcription activators involved in the control of multidrug resistance in Saccharomyces cerevisiae. To identify the amino acids essential for Pdr3p function, the loss-of-function pdr3 mutants were isolated and characterized. Two plasmid-borne pdr3 alleles, pdr3-E902Ter and pdr3-D853Y, which failed to complement drug hypersensitivity in the Deltapdr1Deltapdr3 mutant strain, were isolated. The E902Ter mutation resulted in a truncated protein lacking the C-terminal activation domain. The D853Y mutation allowed the expression of entire Pdr3p, but its transactivation function was lost. When overexpressed from the P(GAL1) promoter, the two mutant alleles increased the sensitivity of wild-type cells to cycloheximide and fluconazole and suppressed drug resistance in gain-of-function pdr1 and pdr3 mutant strains. The drug-sensitizing effect of overexpressed loss-of-function pdr3 mutant alleles correlated with their ability to suppress PDR5 transcription and rhodamine 6G accumulation in transformants of the wild-type and Deltapdr1 mutant strains. These results demonstrate that amino acid residue Asp853 is essential for Pdr3p function, and indicate that specific loss-of-function pdr3 mutations can convert the Pdr3p transcription activator to a multicopy suppressor of multidrug resistance.

Reference Type
Journal Article
Authors
Sidorova M, Drobna E, Dzugasova V, Hikkel I, Subik J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference