Reference: Stribinskis V and Ramos KS (2007) Rpm2p, a protein subunit of mitochondrial RNase P, physically and genetically interacts with cytoplasmic processing bodies. Nucleic Acids Res 35(4):1301-11

Reference Help

Abstract


The RPM2 gene of Saccharomyces cerevisiae codes for a protein subunit of mitochondrial RNase P and has another unknown essential function. We previously demonstrated that Rpm2p localizes to the nucleus and acts as a transcriptional activator. Rpm2p influences the level of mRNAs that encode components of the mitochondrial import apparatus and essential mitochondrial chaperones. Evidence is presented here that Rpm2p interacts with Dcp2p, a subunit of mRNA decapping enzyme in the two-hybrid assay, and is enriched in cytoplasmic P bodies, the sites of mRNA degradation and storage in yeast and mammalian cells. When overexpressed, GFP-Rpm2p does not impact the number and size of P bodies; however, it prevents their disappearance when translation elongation is inhibited by cycloheximide. Proteasome mutants, ump1-2 and pre4-2, that bypass essential Rpm2p function, also stabilize P bodies. The stabilization of P bodies by Rpm2p may occur through reduced protein degradation since GFP-Rpm2p expressing cells have lower levels of ubiquitin. Genetic analysis revealed that overexpression of Dhh1p (a DEAD box helicase localized to P bodies) suppresses temperature-sensitive growth of the rpm2-100 mutant. Overexpression of Pab1p (a poly (A)-binding protein) also suppresses rpm2-100, suggesting that Rpm2p functions in at least two aspects of mRNA metabolism. The results presented here, and the transcriptional activation function demonstrated earlier, implicate Rpm2p as a coordinator of transcription and mRNA storage/decay in P bodies.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Stribinskis V, Ramos KS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference