Reference: Eluere R, et al. (2007) Compartmentalization of the functions and regulation of the mitotic cyclin Clb2 in S. cerevisiae. J Cell Sci 120(Pt 4):702-11

Reference Help

Abstract


Orderly progression through the eukaryotic cell cycle is a complex process involving both regulation of cyclin dependent kinase activity and control of specific substrate-Cdk interactions. In Saccharomyces cerevisiae, the mitotic cyclin Clb2 has a central role in regulating the onset of anaphase and in maintaining the cellular shape of the bud by inhibiting growth polarization induced in G1. However, how Clb2 and the partially redundant cyclin Clb1 confer specificity to Cdk1 in these processes still remains unclear. Here, we show that Clb2 mutants impaired in nuclear import or export are differentially affected for subsets of Clb2 functions while remaining fully functional for others. Our data support a direct role of the cytoplasmic pool of Clb1,2-Cdk1 in terminating cytoskeleton and growth polarization, independently of G1 cyclin transcriptional regulation. By contrast, the nuclear form of the cyclin is required for timely initiation of anaphase. Clb2 localization influences its stage-specific degradation as well. We report that Clb2 trapped in the cytoplasm is stabilized during anaphase but not at the time of mitotic exit. Altogether, our results demonstrate that the subcellular localization of the mitotic cyclin Clb2 is one of the key determinants of its biological function.

Reference Type
Journal Article
Authors
Eluere R, Offner N, Varlet I, Motteux O, Signon L, Picard A, Bailly E, Simon MN
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference