Reference: Shlevin L, et al. (2007) Location-specific depletion of a dual-localized protein. Traffic 8(2):169-76

Reference Help

Abstract


In recent years, a growing number of proteins have been shown to be localized in more than one subcellular location, although encoded from a single gene. Fundamental aspects in the research of such dual-distributed proteins involve determination of their subcellular localization and their location-specific functions. The lack of sensitive and suitable tools to address these issues has led us to develop a novel tool for functional detection of cytosolic/nuclear isoproteins in the cell, which we term location-specific depletion or subcellular knockout. The depletion of the protein occurs post-translationally via degradation by the ubiquitin-proteasome system, which operates only in the cytosol and the nucleus. As an example, we fused the yeast tricarboxylic acid (TCA) cycle enzyme aconitase to a degron sequence (SL17) recognizable by the ubiquitin-proteasome system. This fusion resulted in the degradation of the cytosolic enzyme, specifically eliminating its activity within the cytosolic glyoxylate shunt without disrupting the protein's activity within the mitochondrial TCA cycle. We show that the degradation of the fusion protein can be attributed specifically to the ubiquitin-proteasome system and that inhibition of this degradation restores its cytosolic activity. This novel tool can be used to detect small subpopulations of dual-targeted proteins, thereby revealing isoproteins that were considered to be confined to a single compartment. The particular advantage of this specific subcellular depletion is that it can reveal the functions of the cytosolic/nuclear isoproteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shlevin L, Regev-Rudzki N, Karniely S, Pines O
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference