Reference: Huang RY, et al. (2007) Small ubiquitin-related modifier pathway is a major determinant of doxorubicin cytotoxicity in Saccharomyces cerevisiae. Cancer Res 67(2):765-72

Reference Help

Abstract


Development of drug resistance is a major challenge in cancer chemotherapy using doxorubicin. By screening the collection of Saccharomyces cerevisiae deletion strains to identify doxorubicin-resistant mutants, we have discovered that the small ubiquitin-related modifier (SUMO) pathway is a major determinant of doxorubicin cytotoxicity in yeast. Mutants lacking UBA2 (SUMO activating enzyme; E1), UBC9 (conjugating enzyme; E2), and ULP1 and ULP2 (desumoylation peptidases) are all doxorubicin resistant, as are mutants lacking MLP1, UIP3, and NUP60, which all interact with ULP1. Most informatively, mutants lacking the SUMO E3 ligase Siz1 are strongly doxorubicin resistant, whereas mutants of other SUMO ligases are either weakly resistant (siz2) or hypersensitive (mms21) to doxorubicin. These results suggest that doxorubicin cytotoxicity is regulated by Siz1-dependent sumoylation of specific proteins. Eliminating SUMO attachment to proliferating cell nuclear antigen or topoisomerase II does not affect doxorubicin cytotoxicity, whereas reducing SUMO attachment to the bud neck-associated septin proteins has a modest effect. Consistent with these results, doxorubicin resistance in the siz1Delta strain does not seem to involve an effect on DNA repair. Instead, siz1Delta cells accumulate lower intracellular levels of doxorubicin than wild-type (WT) cells, suggesting that they are defective in doxorubicin retention. Although siz1Delta cells are cross-resistant to daunorubicin, they are hypersensitive to cisplatin and show near WT sensitivity to other drugs, suggesting that the siz1Delta mutation does not cause a general multidrug resistance phenotype. Cumulatively, these results reveal that SUMO modification of proteins mediates the doxorubicin cytotoxicity in yeast, at least partially, by modification of septins and of proteins that control the intracellular drug concentration.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Huang RY, Kowalski D, Minderman H, Gandhi N, Johnson ES
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference