Take our Survey

Reference: Queiros O, et al. (2007) Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes. Curr Genet 51(3):161-9

Reference Help

Abstract


The present work describes a detailed physiological and molecular characterization of the mechanisms of transport of carboxylic acids in Kluyveromyces lactis. This yeast species presents two homologue genes to JEN1 of Saccharomyces cerevisiae: KlJEN1 encodes a monocarboxylate permease and KlJEN2 encodes a dicarboxylic acid permease. In the strain K. lactis GG1888, expression of these genes does not require an inducer and activity for both transport systems was observed in glucose-grown cells. To confirm their key role for carboxylic acids transport in K. lactis, null mutants were analyzed. Heterologous expression in S. cerevisiae has been performed and chimeric fusions with GFP showed their proper localization in the plasma membrane. S. cerevisiae jen1Delta cells transformed with KlJEN1 recovered the capacity to use lactic acid, as well as to transport labeled lactic acid by a mediated mechanism. When KlJEN2 was heterologously expressed, S. cerevisiae transformants gained the ability to transport labeled succinic and malic acids by a mediated mechanism, exhibiting, however, a poor growth in malic acid containing media. The results confirmed the role of KlJen1p and KlJen2p as mono and dicarboxylic acids permeases, respectively, not subjected to glucose repression, being fully functional in S. cerevisiae.

Reference Type
Journal Article
Authors
Queiros O, Pereira L, Paiva S, Moradas-Ferreira P, Casal M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference