Reference: Sylvestre J, et al. (2003) Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria. Genome Biol 4(7):R44

Reference Help

Abstract


BACKGROUND: Subcellular messenger RNA localization is important in most eukaryotic cells, even in unicellular organisms like yeast for which this process has been underestimated. Microarrays are rarely used to study subcellular mRNA localization at whole-genome level, but can be adapted to that purpose. This work focuses on studying the repartition of yeast nuclear transcripts encoding mitochondrial proteins between free cytosolic polysomes and polysomes bound to the mitochondrial outer membrane. RESULTS: Combining biochemical fractionations with oligonucleotide array analyses permits clustering of genes on the basis of the subcellular sites of their mRNA translation. A large fraction of yeast nuclear transcripts known to encode mitochondrial proteins is found in mitochondrial outer-membrane-bound fractions. These results confirm and extend a previous analysis conducted with partial genomic microarrays. Interesting statistical relations among mRNA localization, gene origin and mRNA lengths were found: longer and older mRNAs are more prone to be localized to the vicinity of mitochondria. These observations are included in a refined model of mitochondrial protein import. CONCLUSIONS: Mitochondrial biogenesis requires concerted expression of the many genes whose products make up the organelle. In the absence of any clear transcriptional program, coordinated mRNA localization could be an important element of the time-course of organelle construction. We have built a 'MitoChip' localization database from our results which allows us to identify interesting genes whose mRNA localization might be essential for mitochondrial biogenesis in most eukaryotic cells. Moreover, many components of the experimental and data-analysis strategy implemented here are of general relevance in global transcription studies.

Reference Type
Authors
Sylvestre J, Vialette S, Corral Debrinski M, Jacq C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference