Reference: Clery A, et al. (2007) Analysis of sequence and structural features that identify the b/c motif of u3 small nucleolar RNA as the recognition site for the snu13p-rrp9p protein pair. Mol Cell Biol 27(4):1191-206

Reference Help

Abstract


Eukaryal Snu13p/15.5K protein binds K-turn motifs, in U4 snRNA and snoRNAs. Two Snu13p/15.5K molecules bind the nucleolar U3 snoRNA required for the early steps of pre-ribosomal processing. Binding of one molecule on the C'/D motif allows association of proteins Nop1p, Nop56p and Nop58p, whereas binding of the second molecule on the B/C motif allows Rrp9p recruitment. To understand how the Snu13p-Rrp9p pair recognizes the B/C motif, we first improved the identification of RNA determinants required for Snu13p binding by SELEX experiments. This demonstrated the importance of an U.U pair stacked on the sheared pairs and revealed a direct link between Snu13p affinity and the stability of helices I and II. Sequence and structure requirements for efficient association of Rrp9p on the B/C motif were studied in yeast cells by expression of variant U3 snoRNAs and immunoselection assays. A G-C pair in stem II, a G residue at position 1 in the bulge and a short stem I were found to be required. The data identify the in vivo function of most of the conserved residues of the U3 snoRNA B/C motif. They bring important information to understand how different K-turn motifs can recruit different sets of proteins after Snu13p association.

Reference Type
Journal Article
Authors
Clery A, Senty-Segault V, Leclerc F, Raue HA, Branlant C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference